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Abstract. Recently, we have presented the first exhaustive analysis of the world-wide airport network. Two
important results of that study are that: (i) the world-wide airport network is a small-world network with
power-law decaying degree and betweenness centrality distributions; (ii) the most connected cities (largest
degree) are typically not the most central cities (largest betweenness centrality). This second finding is
particularly significant because of results demonstrating that nodes with high betweenness tend to play
a more important role in keeping networks connected than those with high degree. Here, we investigate
if current network models can explain this finding and we show that they cannot. Thus, we propose a
new model that explains this behavior in terms of the geo-political constraints that affect the growth of
the airport network. We further hypothesize that in other infrastructures, affected by similar geo-political
constraints, critical locations might not coincide with highly-connected hubs.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Da Systems obeying scaling laws
– 89.40.Dd Air transporation

1 Introduction

The importance of the world-wide airport network ex-
tends beyond the convenience it may provide travelers.
Airports and national airline companies are often times
associated with the image a country or region wants to
project [1–4], and have an enormous economic impact on
local, national, and international economies [5]. For these
reasons, many measures—including, total number of pas-
sengers, total number of flights, or total amount of cargo—
quantifying the importance of the world airports are com-
piled and publicized [6].

As for any critical infrastructure, failures or inefficien-
cies of the system have large economic costs. For example,
it was calculated by the European Organisation for the
Safety of Air Navigation that flight delays cost the coun-
tries in Europe 150–200 billion Euro in 1999 alone [5].

The airport network is also responsible for the mobility
of millions of people everyday —for example, O’Hare in-
ternational airport, in Chicago, is used by approximately
200,000 people every day— and, indirectly, for the propa-
gation of certain diseases such as influenza and, recently,
SARS. The airport network thus plays for certain diseases
a role that is analogous to that of the web of human sex-
ual contacts [7] for the propagation of AIDS and other
sexually-transmitted infections [8].
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In a recent article [9], we have reported the results of
the first exhaustive analysis of the structure of the world-
wide airport network. We considered 3883 cities and more
than 500,000 non-stop flights [10], corresponding to 27,051
distinct city pairs having non-stop connections, and in-
vestigated the overall properties, efficiency, and growth
mechanisms of the resulting network. A number of results
of that study are worth pointing out.

First, the world-wide airport network is a small-world
network [11,12] for which the number of direct connec-
tions k to a given city (degree) has a cumulative distribu-
tion P (> k) that decays as a truncated power-law

P (> k) ∝ k−α f(k/k×) , (1)

where α = 1.0 ± 0.1 is the power-law exponent, f(u) is
a truncation function, and k× is a crossover value that
depends on the size S of the network as k× ∼ S0.4.

Second, the number of shortest paths b going through
a given city (betweenness centrality [13,14]) has a distri-
bution that also decays as a truncated power-law

P (> b) ∝ b−ν g(b/b×) (2)

where ν = 0.9 ± 0.1 is the power-law exponent, g(u) is
a truncation function, and b× is a crossover value that
depends on the size of the network as b× ∼ S0.5.

Third, unlike for most other networks reported in the
literature [15–18], the most connected cities (largest de-
gree) are typically not the most central cities (largest be-
tweenness centrality) —this behavior is observed both at
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the world-wide level and when considering regional airport
networks. In other words, in the airport network there are
cities with very small degree but very large betweenness.
This result turns out to be very important as it has been
shown that nodes with high betweenness tend to play a
more important role than those with high degree in keep-
ing networks connected [16] —and therefore might also
play a key role in the propagation of diseases.

Here, we address the issue of identifying the mecha-
nism by which central nodes that are not hubs can emerge.
Recently, it has been suggested that assortative networks
—that is, networks in which nodes belongs to classes and
in which nodes tend to connect to other nodes of the same
class [19]— might naturally display this property [17].
First, we show that current models that consider pref-
erential attachment and geographical distance constraints
cannot reproduce the observed behavior, even though they
generate networks in which airports tend to be connected
with other airports that are geographically close.

We solve the large-betweenness/small-degree puzzle by
considering a new type of mechanism that takes into ac-
count geo-political constraints. This type of constraints
are present in the growth of the airport network and also
in the growth of a number of other critical infrastructures,
such as the power grid. Thus, we surmise that, as for the
airport network, for such infrastructures the critical loca-
tions might not coincide with the hubs.

2 The roles of preferential attachment
and distance on the structure of the airport
network

First, we consider a minimum model that takes into ac-
count preferential attachment and geographical distance
constraints. Preferential attachment is known to gener-
ate a scale-free degree distribution, as observed in the real
airport network [9], while the distance constraints account
for the fact that airports are typically connected to other
airports that are close geographically.

The model is as follows. At each time step, one of two
events can take place [20]:
– With probability p, we establish a new link between

two nodes already in the network.
– With probability 1−p, we add a new node and connect

it to m nodes already in the network.
In both cases, when establishing the connections we take
into account the degrees of the nodes and the effect of geo-
graphical distance between nodes. Airports, when created,
are placed in locations that correspond to actual airport
locations and the size of the model network is always the
same as the size of the real network1. When creating a
link between a new node i and an existing node j, j is
selected with probability

Πj ∝ kj

F (dij)
, (3)

1 The locations of the airports are chosen in random order.
Identical results are obtained if airports are added using some
alternative order–for example, adding first the airports with a
higher load of passengers.
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Fig. 1. Case F (d) = d r. Filled symbols correspond to the
airport network and open symbols to the model. The simu-
lations are carried out for p = 0.65 (so that the exponent of
the degree distribution is in agreement with the observed one)
and m = 1 (so that the average degree is as close as possible
to the average degree of the airport network). The number of
cities in the network and their geographical coordinates are
taken from the data. We present results for r = 1, r = 2, and
r = 3. (a) Degree distribution of the real networks and of net-
works generated with the model. For convenience, the degree
k is scaled with the average degree z of the network. (b) Be-
tweenness distribution of the real networks and of networks
generated with the model. The betweenness of the nodes is
scaled with the average betweenness of the network.

where F (dij) is an increasing function of the geographical
distance dij between the two cities. Similarly, when
creating a new link between two existing nodes i and j,
they are selected according to

Πij ∝ kikj

F (dij)
. (4)

We investigate two different functional forms for the func-
tion F (d): (i) a power-law F1(d) = d r [21]; (ii) an exponen-
tial F2(d) = exp (d/d×) [22], where d× is a characteristic
distance.

The preferential attachment mechanism leads to a
power-law degree distribution —whose exponent can be
tuned by changing the value of p [20]— while F (d) gives
rise to a truncation of the power-law decay. When F (d)
increases very rapidly, the power-law decay regime can
disappear altogether [22].

2.1 Power-law dependence on the distance

The power-law dependence on the distance has been used
to model the topology of the Internet [21], where distance
constraints are present but appear not to be very strong.
We show the results of the model with power-law distance
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Fig. 2. Case F (d) = d r. The simulations are carried out with
the same parameters as in Figure 1. The points correspond to
simulations of the model and the shaded regions represent the
95% confidence intervals for random networks with exactly the
same degree distributions as for the model networks [23,24].
(a) Betweenness of the nodes as a function of their degree for
a model world-wide airport network. (b) Betweenness of the
nodes as a function of their degree for a model North American
airport network.

constraints in Figure 1. We fix the parameter p = 0.65 so
that the exponent of the degree distribution is in agree-
ment with the observed one. Similarly, we fix m = 1 so
that the average degree is as close as possible to the aver-
age degree of the world-wide airport network.

Our results show that the model is able to reproduce
both the degree distribution P (> k) (Fig. 1a) —whose
exponent is imposed at the outset— and the betweenness
distribution P (> b) (Fig. 1b) —which is an outcome of
the model.

However, the preferential attachment rule and the dis-
tance constraints cannot explain the fact that some nodes
with very small degree have a very high betweenness
(Fig. 2). Although larger r exponents in the distance con-
straint generate some fluctuations in the betweenness of
nodes as a function of their degree, these fluctuations are
clearly smaller than the fluctuations observed in the real
data [9].

2.2 Exponential dependence on the distance

Next, we consider the case F (d) = exp(d/d×). We show
the results of the model for this case in Figure 3. As in the
case of F (d) = d r, we use p = 0.65 and m = 1, so that
the degree distribution is as similar as possible to the real
one.
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Fig. 3. Case F (d) = exp(d/d×). Filled symbols correspond to
the airport network and open symbols to the model. The sim-
ulations are carried out with the same parameter values as in
Figure 1. Distances are expressed in terms of the radius of the
Earth RT . We plot results for d× = 0.2 RT ≈ 1, 300 km and
d× = RT ≈ 6, 500 km. (a) Degree distribution of the real net-
work and of networks generated with the model. (b) Between-
ness distribution of the real network and of networks generated
with the model.

The degree and betweenness distributions (Figs. 3a
and b, respectively) are again in good agreement with the
data. However, the introduction of a characteristic length
has some important consequences. Namely, F (d) only af-
fects the structure of the network when considering regions
much larger than d×. When d× ≈ 1, 300 km we observe
important fluctuations of b(k) for the world-wide model
network and the emergence of cities with relatively small
degree and high betweenness (Fig. 4a). However, with the
same characteristic length such cases are not observed at
all for a model of the North American region (Fig. 4b).

3 Role of geo-political constraints
on the structure of the airport network

From the analysis of the role of preferential connections
and distance constraints, one can conclude that some
other mechanism must be at play in the formation and
evolution of the airport network. Preferential attachment
and distance constraints appear to explain the degree and
the betweenness distributions but fail to account for the
fact that some central airports have small degree. We hy-
pothesize that there is an additional constraint that arises
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Fig. 4. Case F (d) = exp(d/d×). The simulations are carried
out with the same parameters as in Figure 3. The points cor-
respond to simulations of the model and the shaded regions
represent the 95% confidence intervals for random networks
with exactly the same degree distributions as for the model
networks [23,24]. (a) Betweenness of the nodes as a function of
their degree for a model world-wide airport network. (b) Be-
tweenness of the nodes as a function of their degree for a model
North American airport network.

from geo-political considerations. Namely, only a few air-
ports in each country are connected to airports in other
countries. The other airports are only permitted to con-
nect to airports within the same country, even though the
geographical distance of some of the flights can be longer
than to cities in neighboring countries.

In order to take this effect into consideration, we mod-
ify the model in the previous section in the following way:
Most cities are only allowed to establish connections with
other cities within the same country and only a few are
allowed to establish international connections. The pre-
cise rules of the model are the following. First, 10% of the
nodes are added exactly as described in Section 2. We use
F (d) = d r with r = 1 to avoid the mentioned problem of
introducing a characteristic distance.

After this initial fraction of nodes is added, the remain-
ing are added again as described in Section 2 but with the
additional constraint that only connections between cities
in the same country are permitted. Some international
connections will still be added whenever a node is already
connected to all the cities in its country.

As we show in Figure 5, this model generates central
nodes with small degree, as observed in the real airport
network. Moreover, this behavior is observed both at the
global level and at the regional level.
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Fig. 5. Case with geo-political constraints. The simulations are
carried out with the same parameters as in Figure 1. The initial
fraction of nodes added without political constraints is 10%.
Central nodes with small degree appear both at the world-wide
level and at the regional level.

4 Conclusions

A recent analysis of the world-wide airport network has
uncovered the surprising finding that the most connected
cities are typically not the most central cities [9].

Here, we have shown that models existing in the lit-
erature cannot account for this fact. In particular, we
have considered a model with preferential attachment and
geographical distance constraints. For this model, large
degree nodes tend to have also large betweenness and
vice versa. Therefore, we have proposed a new model with
geo-political constraints. In our model, only a few cities in
each country are allowed to establish connections to cities
in other countries. This model explains the existence of
large-betweenness/small-degree nodes.

Importantly, we note that such geo-political con-
straints are also present in the formation and growth
of other critical infrastructures such as the power grid.
Therefore, we surmise that, as for the airport net-
work, such infrastructures might have critical locations
—“Achilles’ heels”— that do not coincide with the hubs.
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