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HOMEOSTATIC TENDENCIES OF FIRM-SIZE DISTRIBUTIONS AND THE EVOLUTION

OF ECONOMIC SYSTEMS

STABILITE DES DISTRIBUTIONS DE TAILLES D'ENTREPRISES ET EVOLUTION
DES SYSTEMES ECONOMIQUES

P. WINIWARTER* and B. ROEIINER**

Abstract : Stable skewed distributions of subsystem-sizes are observed in a
variety of biological, sociological and economic systems (Zipf's law, rank-
size rule, Pareto-law) . Based on a fundamental mathematical property of
Pareto distributions a theoretical explanation is proposed, which applies to
hierarchically organized systems in general . As supporting evidence the ana-
lysis of empirical data concerning the evolution of firm-size distributions of
the 500 largest U .S . industrial corporations over the last 25 years is presen-
ted .

Résumé : Des distributions stables du type Paretien sont fréquemment observées
pour lea tailles de sous-systèmes en économie, en urbanisme, en linguistique,
en biologie (loi de Zipf, loi rang-taille, loi de Pareto) . Nous proposons one
explication Théorique basée sur one propriété mathématique fondamentale des
distributions de Pareto, qui s'applique de faqon generate a des système ayant
une structure hiérarchique . A 1'appui, nous présentons une analyse empirique
de données concernint 1'évolution de la taille des 500 plus grandes entre-
prises industrielles américaines durant lea 25 dernières années .

Key Words : HIERARCHICAL SYSTEMS, FIRM-SIZE DISTRIBUTIONS,
ZIFF'S LAW, PARETO LAW

Mots Clés : SYSTEMES HIERARCHIQUES, DISTRIBUTIONS DE TAILLE D'ENTREPRISES,
LOI DE ZIPF, LOI DE PARETO

1 . Introduction
Numerous articles have been concerned with a class of skew distribution func-
tions that appear in a wide range of empirical data describing economic,
sociological, biological and symbol systems (Simon 55) . Simon 58 again empha-
sized the need to accumulate a body of knowledge about these regularities and
the processes that generate them .
In this paper we propose an answer to the following two questions
(i) Why do we observe Paretian size-distributions in such a large variety of
systems ? and
(ii) Why do these size-distributions remain self-similar during the evolution
of a system ?

--------------------------------------------------------------------------
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2 . Empirical determination of size-distributions

In all areas of application (economics, geography, biology, linguistics) the
empirical determination of size-distributions is based on three hierarchical
levels of observation/description of a system
level 3 : the system is considered as a whole (fat circle in fig . 1, e .g . a

country, a national economy) .
level 2 : the system is considered as being composed of mutually exclusive

subsystems (dotted circles in fig . I, e .g . cities, firms) .
level 1 : the system is considered as being composed of elementary elements

(points in fig . 1, e .g . human inhabitants, employees or dollars of
asset value) .

figure 1 : Three level description of a system

The size of a subsystem at a given time t is defined as the number of elemen-
tary elements contained within the subsystem . One determines the sizes of all
subsystems contained within the system and orders the subsystems according to
decreasing size . Thus if the system contains M subsystems, one obtains a se-
quence of sizes S1 S2 . . . S . . . . SM . The index j in the ordered sequence
is called rank . Plotting the ranks j as ordinate and the sizes S as abscissa
one obtains a distribution called rank-size distribution S(j), which is equi-
valent to the cumulative frequency distribution commonly used in statistics .

3 . Statistical distributions approximating empirical size data
The most simple mathematical expression approximating empirical rank-size dis-
tributions is called Zipf's law :

	

"-

S(7) = a j-b

	

. (I)

with S(j) the size of the subsystem ranked j, a and b parameters ; the para-
meter b corresponding to the slope of the regression line in log-log coordi-
nates .
In the case of a cumulative frequency vs . size representation the most simple
mathematical expression approximating empirical data is called Pareto law
of the first type :

	

d
P(s) _ (s°:)	 when

	

s > so	(2)

with P(s) - P(S 2 s ) the percentage of subsystems whose size s exceeds the
size a, the parameter d corresponding to the slope of the regression line in
log-log coordiNates and s being a threshold size above which the law is ap-
plicable .

	

o
Besides these two very simple mathematical laws a whole panoply of more or
less complicated distribution functions using more than two parameters have
been proposed for fitting the observed data . Without going into details we
cite only a few of them : the Pareto law of the second type, the Pareto law
o£ the third type, a modified Zipf's law, the Yule distribution, the log-
normal distribution, the Benini law and several composite distributions . In



a comparative study fitting a variety of empirical size-distributions by eight
different mathematical functions Quandt 64 comes to the conclusion, that all
the proposed laws are very similar, and if one law yields a good adjustment
of the data, then this is also the case for several other laws . In our view
searching for best fits does not lead any further in our comprehension of the
observed regularities ; a choice among alternative models can only be made by
analyzing and judging the basic theoretical assumptions concerning the under-
lying processes which lead to the observed distributions .

4 . Theoretical interpretation of rank-size distributions
4 .1 . Panoply of existing models

The size-distributions of cities have been studied quite extensively and a
great number of different models has been proposed by various authors . A very
full bibliography containing more than 200 references can be found in a recent
study by Pumain 82 . Static models "explain" the observed regularities in
terms of a spatial economic hierarchy, as an economic optimum, as a state of
maximum entropy or as a stationary state of a Markov-process . Constant growth
models are based on a process of allometric growth, on a simple stochastic .
process of redistribution, on a proportional effect of many small changes or
on a simple deterministic growth process . Finally in the dynamic models (e .g .
Roehner 83) variable growth rates are taken into account .
Fur firm-size distributions the proposed models are less numerous and all of
them have an isomorphic equivalent among the city-size models (Zipf 48,
Adelman 58, Steindl 65, Ijiri 74) . Summarizing we can say about this panoply
of models
- All proposed models arrive - at least in special cases - at a Pareto law,
which is empirically most frequently observed .

- Those models do not have any predictive power in the sense that, for ins-
tance, the slope of the distribution for a given country cannot be fore-
cast from other known economic or social variables of that country .

4 .2 . An alternative theoretical eMlanation for the regularities of size-
distributions within hierarchically organized syaterns

The stability of the Gaussian law is a well known property to every experimen-
tal scientist ; i .e . if one observes one Gaussian distribution G' and a se-
cond Gaussian distribution G" then the combined distribution G' + G" - G is
Gaussian . (The sign a designates the addition of random variables) . The
Gaussian probability law is said to be "stable" (under addition) . Op to a
scale transformation, and up to the choice of the origin, G shows the same
properties as G' and G" .

	

'
The family of all laws which satisfy the stability requirement has been cons-
tructed by Levy 37, Gnedenko 54 ; it includes, naturally the Gaussian law,
but it includes also certain non-Gaussian laws, each of which turns out to
satisfy the Pareto law

P(s) riv
(s
s°/

	

with

	

0Z c(,( 2, or with

	

1 < alpha < 2

	

if the ex-

pected value E(S) is finite . Hence, according to Mandelbrot 60, if a sum of
many components is not Gaussian, is skewed, then the most reasonable assump-
tion concerning this sum is that it follows a Pareto law (for large values o£
the variable) .
Looked at from this point of view the observed Pareto distributions loose
much of their mystery .

	

r _
In a static description a Pareto distribution on a given level of observation
can be explained as weighted sum of (in a first approximation) independent
variables on the next lower level of observation, with each variable being
itself distributed according to a Pareto law . In the case of city-size dis-
tributions, each city can be considered as an agglomerate of economic units



of different types (barber shops, cleaning, auto-repair, manufacturing, bank,
insurance, utilities, transportation enterprises, etc .) . According to empiri-
cal evidence the size distributions of enterprises of a given type follow a
Pareto law within a national economic system (Zipf 47, Simon 58) . So follo-
wing our above arguments it is not surprising, that cities considered as ag-
glomerates of Paretian variables follow a Pareto law .
Similar arguments hold for the distribution of firm-sizes . We consider a
business firm as an agglomerate of production units of different types . Ac-
cording to empirical evidence (Simon 58) the size-distributions of production
units of a given type follow a Pareto law within a national economy and it is
not surprising, that firms considered as agglomerates of Paretian variables
follow a Pareto law .
In order to apply our arguments to hierarchically organized systems in general
it is sufficient to show
a) the decomposability of sub-systems into sub-sub-systems on a next lower
level of observation/description and
b) the Paretian behaviour of the size distributions of the different types of
sub-sub-systems .
So far we have proposed a recursive argument answering question (i) . The ob-
served self-similarity of the Paretian distribution during the evolution of
a system still remains to be explained .
We consider a Paretian size distribution S (j) at time t . The size distribu-
tion St+l(i) at time t+l shall be generate by the following process

S t+l (i) = gamma St(j) m Delta(j)	 (8)

with Delta(j) = St+l(j) - gamma s

i .e . the resulting size of a subsystem St+ , depends on its initial size S t
multiplied by a constant mean growth factor gamma plus a deviation from the mean
growth, Delta added at random . In the case of the evolution of firm-sizes the
distribution of the deviations ni from the mean growth turns out to be
Paretian with a parameter of

	

identical to the parameter alpha of the initial
Paretian size distribution (see fig . 2) .

.figure 2 : Ranked deviations from mean growth in aoset size of
the largest U.S . industrial corporations 1981-82 .



According to the mathematical property of stability (under addition of
Paretian variables one can therefore conclude, that the resulting distribu-
tion S

	

of the above process must be Paretian . Since the distributions of
both variables S

	

and Delta have the same slope IX

	

, the slope of the resulting
distribution S t [ends to be identical . Applying process (3) repeatedly leads
therefore to a selfsimilarity of the size-distributions during the evolution
of the system .

'5 . Empirical analysis of the evolution of firm-size distributions
Unlike

	

the case of city-size discributions,empirical studies concerning
firm-size distributions are rather scarce (Zipf 48, Hart 56, Adelman 58,
Simon 58, Ijiri 74, Winiwarter 83) . A possible explanation for this rather
mild interest is the fact that classic economic theory has little to say on
the subject . In the following we summarize the results of an empirical analy-
sis concerning the evolution of .,the 500 largest U .S . industrial corporations
during the last 25 years based on the Fortune data .
- The particular form of firm-size distributions within a given economic sys-
tem reveals aside from a scale factor,relatively constant over a long period
of time

	

: St+1 (j) = gamma St(j), where S t (j) stands for the size distribution in

year t, St+1 (j)

	

for the size distribution in-'year t+1, and gamma a scale factor .
This self-similarity of the distribution curves holds in periods of overall
economic growth as well as in periods of economic recession despite the fact,
that changes in size for a giveq firm are much more frequent and important
than in the case of cities . To illustrate these drastic changes : from the
50 largest industrial firms in 1954 only 20 can be found among the 50 largest
in 1982 ; the other 30 have declined in size, been absorbed in mergers or have
simply gone out of business . On the other hand 12 of the 50 largest firms in
1982 were not even ranked among the 500 largest in 1954 or simply did not
exist at that time . To observe a constant form of the size-distributions des-
pite this intensive shuffling around within the system seems to us quite re-
markable . Figure 3 illustrates the asset-size distributions of the 150 lar-
gest U .S . industrial corporations for three different years of reference .

figure 3 : Ranked asset-size distribution of the largest U.S . industrial firms



- A second interesting observation concerns concave or convex departures from
the straight line fits to the distributions in log-log coordinates . These
departures appear and disappear in time with periods of several years . De-
partures from the "straight" distribution are rapidly brought "in line" again .
For this reason we have chosen the term "homeostatic tendencies" in the title
o£ this paper .
- A third observation concerns the comparison of rank-size distributions
using different elementary measures for the firm-size . The following distri-
butions were compared

SA (j)

	

ranking (inns by the size of their assets in dollars

SS (j)

	

ranking firms by the size of their total annual sales, and

SP (j)

	

tanking firms by the size of [heir total annual net profit .

For a given year the following relations hold between the three different
distributions

S**S(j)= lambda S**A(j)	and S**P(j)=mu S**S(j) with lambda and mu scale factors,

or stated in other terms S**P(j) oc S**S(j) ~ S**A(j).
Intuitively we are not surprised to find, that profits are proportional to
sales, and sales are proportional to assets within a given industry . What
surprises, is that one and the same scale factor applies for the entire dis-
tribution, i .e . for all values of j .

6 . Conclusion
In our view the evolution of firm-size distributions is only a particular case
exhibiting regularities of global system behaviour common to self-organizing
systems in which processes of birth and death as well as migrations on several
hierarchical levels take place .
Based on the fundamental mathematical property of stability (under addition)
of Paretian variables we attribute the frequent encounter of Pareto distribu-
tions of subsystem sizes to the hierarchical organization of the observed
system . Each subsystem can be considered as an agglomerate of different types
of sub-sub-systems on the next lower level of observation/description with the
size-distributions of each type of sub-sub-system following a Pareto law .
Using the same argument of stability under addition for Paretian variables we
attribute the self-similarity of size-distributions during the evolution of a
system to the Paretian behaviour of the deviations from mean growth .
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