
From Trophic Webs and Hierarchical Energy
Transformation Systems to Multilayer Neural

Networks

Address -

	

(1) Bordalier Institute, 41270 Boursay, France,fax + 33 5480 1937,
e-mail : winiwarter@compuserve.com
(2) Poznan University ofTechnology, ul . Piotrowo 3,60-965 Poznan, Poland, fax +48 61 78 2307,
e-mail : cempel@poznlv.tup.edu.p l

Abstract.
The key idea put forward in this paper is the formal equivalence between energy transformation processors undergoing
birth&death processes (Birth&Death processors) and formal neurons. Both can be described as binary threshold automata. The
organization of Birth&Death processors in hierarchical feedforward structures (trophic webs) is equivalent to the organization
of multilayer feedforward networks of formal neurons. The error-backpropagation in such neural networks can be interpreted as
equivalent to the feedback of downgraded energy in trophic webs . Assuming a correlation between feedback and the overall
web performance in terms of global energy throughput, an ecosystem can be modeled as a feedforward artificial neural network
with error backpropagation being trained through gradient descent. Hence all features of this class of ANNs concerning memory
and leaming can be applied to the trophic web of an ecosystem and to hierarchical natural and " artificial » energy
transformation systems in general. Pweto-Zipf distributions are observed for feedback symptoms in all natural and « artificial u
energy transformation hierarchies . Pareto-Zipf distributions are also observed for the backpropagated errors of formal neurons
learning along gradient descent.

Key Words - energy transformation, information transformation / transmission, Birth&Death processors, threshold
automata, Pareto-Zipf-Frechet-Weibull distributions, trophic webs, neural networks, memory, backpropagation, adaptation,
learning, evolution

1 Introduction: where to locate Intelligence?

1.1 The reductionist approach to intelligence
zooming-in to internal causes located in subsystems

Peter WINIWARTER (1) and Czeslaw CEMPEL (2)

According to the reductionist paradigm, causes are looked for by zooming into the subsystems of a system
and its constitutive parts. Human intelligence is located in the brain and its functioning is explained in terms of
the functioning of its constitutive parts, the neurons with their dendrites, cell-body, axons and synapses . . .

The formal model of a neuron (a binary threshold automaton) and its aggregation to artificial neural networks
has developed into an autonomous field of research . So far most practical applications of ANNs try to replace
tasks which are normally accomplished by human intelligence (pattern recognition, image processing, language
and speech processing, neural control systems . . . .) .

Recently ANNs have also been used to replace scientific theoretical predictions . Gemoth and Clark (19951,
for example, present multilayer feedforward network models, that predict empirical nuclear decay probabilities
extremely well for the entire range of nuclei measured . So far no global nuclear physics theory exists, which
produces results of equivalent quality.

However Gernoth and Clark use the ANN approach only as a mathematical black box mapping inputs
(nuclear mass and charge) to outputs (nuclear alpha-, beta-, electron capture and spontaneous fission decay
probabilities or stability) . They do not see any «physical» analogy between the processes going on within a
system of nucleons and the ANN model. ANN vector-mapping, like mathematical curve-fitting, may be a very
powerful empirical data analysis and prediction tool ; but so far it lacks a explanatory » power .

1.2 The holistic approach to Intelligence
zooming-out to external causes located in metasystems

According to the holistic approach (or systems approach), causes are looked for by zooming out analyzing the
relations of systems amongst each other and understanding the control mechanisms of the metasystem and meta-
metasystems etc.
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In our view, the holistic approach does not replace the reductionist approach. It is only a complementary
view, which allows to discover (uncover) relationships and causes impossible to detect with a reductionist
approach only .

Applying the holistic approach to intelligence in nature, we propose in this article a conceptual framework,
which locates intelligence not in microscopic cells or molecules, but in macrostructures of energy transformation
processors and their hierarchical organization .

The ANN approach, as used in this paper, is completely freed from its original anthropomorphic brain and
neural cell analogy . When we talk about ANNs, we consider only the abstract formal model of binary threshold
automata, which are organized in a specific topology, which process data according to a set of well defined
rules, and for which consecutive processing cycles are controlled by a formal strategy .

2 Structures of natural Intelligence : massive parallel energy transformation
hierarchies, death processing, predator-pry relations

2.1 Local structure: from Birth&Death processors (energy transformation) to binary state
transitions in formal Neurons (information processing) .
In recent papers [Cempel, 1987, 1991, 1992 ; Winiwarter and Cempel, 1992] we have presented and

elaborated a theory of generalized Energy&Information processors . The model is characterized by energy input,
upgraded as well as degraded energy outputs and a limited internal transformation capacity (see fig . 1 below as
an example). In addition to the traditional energy flows our model is based on two very simple postulates

1) the internal accumulation potential is finite and irreversibly filled up to a threshold value .
2) the internal accumulation level regulates the internal accumulation rate through positive feedback

(autocatalytic behavior of internal accumulation) .
This very simple model results in important statistical features concerning the behavior of a single processor

over its life-time and the statistical behavior of a population of similar processors.
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Figure 1 . Elementary Birth&Death processor, the building block of the self-similar hierarchical
Energy&Information transformation processing in operating systems .

Symptom statistics over the . life-time of a single Birth&Death processor (temporal cross-section of an
individual)

Observing one processor over its entire life-time (from its birth at internal time 0 = 0 to its death at
breakdown time o = 0,) we find its asymptotic behavior of transformed energy . Hence when the breakdown of the
processor is approached, the transformed energy goes to infinity (see figure 2a) .

However, in most cases, we can neither directly observe nor measure this transformed energy . We can only
measure some covariant symptoms by means of some filter T as illustrated in figure 1 .



If we observe a given symptom of one processor at regular time intervals over its life span we can make a
cumulative probability of symptom occurrence. It can be shown analytically and experimentally [Cempel, 19921,
that such a cumulative probability is of the Zipf-Pareto-Freshet-Weibull type (called ZPFW distribution
hereafter) [Pareto, 1897 ; Winiwarter 1987 ; Cempel, 19921 .

Symptom statistics for a population of Birth&Death processors (snapshot or spatial cross-section over a
population of individuals at different life-advancement)

Observing a population of energy transformation processors, which belong to the same operating meta-
system and which are in different advancement of processor life, we can make a cumulative probability
distribution of symptom occurrence within the population . It can be shown also [Cempel, 1992 ; Cempel and
Natke, 19921, that the symptom distribution is again a long-tailed distribution of the ZPFW type as above.

Moreover, there is strict equivalence between the type of symptom life curve observed for a single processor
and the observed symptom probability distribution for a population of processors . In the case of processors which
are identical (or of similar « hardware technology » in a first approximation) the parameters defining the ZPFW
distribution are identical in both domains ; i .e . in the symptom life domain of a single processor and in the
symptom population domain. Therefore we can make inferences about the evolution of a single processor based
on parameters derived from measurements of a population of processors, and vice versa .

Co-transformation : the equivalence of Energy and Information
So far we have considered only the energy transformation aspect of Birth&Death processors during their

lifetime (from birth to death) . As illustrated in figure 2a) below, this generalized life process at a given level can
be described by a continuos function with an asymptotic behavior (singularity) at the breakdown of the processor .

The same life-process observed by the metasystem can be described as a binary information process . As long
as the lower level processor is in the operating state (life) the metasystem observes no change or 0-state . Only at
the breakdown of the processor (it's death) the metasystems observes a binary state transition to 1-state (see
figure 26) .

This double-sided or Janus-face like view, « seeing » one and the same process either as a continuos energy
transformer or as a discrete binary information transmitter is the important idea put forward in this paper .
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Figure 2 . The equivalence of continuous energy processing and binary information transmission
continuos energy-transformation processes on one level are equivalent to state transitions or

discrete binary information transmitted to the metalevel . (death is a squashing function)

Based on figure 2 we can draw an analogy between an energy transformation processor (Birth&Death
processor) and a formal neuron .

Both can be considered as threshold automata with binary state changes as explained below
"

	

An energy transformation processor sums up internally stored transformation energy up to its internal capacity
Edb (see figure 1) . When this capacity is reached, (at breakdown-time

	

06 for death processes) the processor
breaks down, which is perceived by the metasystem as a binary state transition . Note, that the internally
accumulated energy is a weighted sum of the input energy .A formal neuron integrates weighted input pulses , comares them with a threshold value and fires a binary signal to the next level., when thethreshold is reached.
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Birth&Death Processors 1

Figure . Operating system : a trophic hierarchy of Birth&Death processors . The self-
similarity of the models permits to zoom in to lower levels and to zoom out to higher levels
using the same conceptual and formal tools .



2.2 Global structure: from Trophic Webs (energy transformation hierarchies) to Multilayer
Neural Nets (information transmission hierarchies)
In the elaboration of the concepts below, we limit ourselves to the modeling of biological ecosystems called

Trphic webs, since they are easy to conceptualize . Our arguments however are more general and can be applied
to any hierarchically organized network of energy transformation (Birth&Death) processors .

Figure 3 . Trophic (Feeding) Levels and Food Chains : Producers and Consumer in Nature.
Organisms vary from one ecosystem to another (shown here are those for forest, deep-sea vent, and
open ocean), but in each ecosystem, autotrophic producers form the first trophic level, while
consumers form the next three trophic levels, and detrivores utilize the wastes from all levels. After
Postlethwait and Hopson [1992] .

Virtually all recent attempts to model evolutionary systems and self-organization are based on hierarchical
concepts [Miller, 1978 ; Jantsch, 1980; Auger 1986, 1990] . The approach of Auger is based on the concepts of
states in the phase space of thermodynamical systems. Applying these concepts to multilevel systems demands
to take bottom-up and top-down interlevel couplings into account. Auger's approach permits to generate dynamical
models applicable to ecological, biological and economical systems. Despite the attractiveness of the model, the
drawback of a purely thermodynamical approach is the lack of Birth&Death processes . The concepts of
thermodynamics are based on ever-living entities (particles) - that never appear, nor disappear - moving around in
system space .

It is the merit of Howard Odum [1988] to have focused our attention on the energy transformation aspect of
hierarchically organized ecosystems . He already stated that " observing self-organization in nature suggests how
energy is related to hierarchy and information . . . The details of the energy transformation mechanisms are quite
different in ecosystems, chemical reaction systems, turbulent hydrodynamical systems, social systems, and stars,
but energy and mathematical characteristics are common to all" .

According to Odum, the hypothesis of energy transformation in self-organizing open systems, quite beyond
classical energetics, involve concepts of selfdevelopment such as systems learning and evolution in energy terms .
"Characteristic ecosystem designs result from self-maximizing energy flow" .

The typical system design is a hierarchical web of energy flows (pathways) and transformation processes
(box units) represented in Figure 4 . below. Energy flows are given on the pathways at steady state with inflows
equal to outflows . At each transformation (box), most of the available energy is degraded and dispersed . A smaller
amount of energy is upgraded energy to the right.
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Figure 4. Energetics of an energy transformation hierarchy with feedback and recycle pathways
omitted . Sketches show the distribution of size and territories of units in each category . (a) Web with
energy flows indicated, (b) energy transformation chain formed by aggregating the web, (c) graph of
energy flows at each stage in the energy hierarchy, and (d) solar transformities for each level in the
hierarchy . After Odum [1988] .

Odum already clearly speaks about control mechanisms through feedback : "As in a military hierarchy,
services and controls are moving back down the hierarchy (to the left). The higher quality but smaller quantity
energy types feed back as controls, reinforcing (amplifying) the production processes . For example, large animals
control the more numerous smaller organisms by their behavior, placing of waste products, ways of eating, and
control of pollination, seeding, and reproduction."

Compared to Odutn's energy transformation hierarchy our proposed model of a trophic web as a hierarchy of
Birth&Death processors is very similar (see Figure 5 below) . The major difference between Odum's elementary
energy transformation units and our elementary Birth&Death processors is the internally irreversibly accumulated
dissipation energy part which finally leads to the break down or death of a processor . It is the death process which
allows to describe a processor as binary threshold automaton .

Hence, based on the above argumentation that Birth&Death processors accumulate weighted energy inputs
up to a threshold, a trophic web of energy transformation processors (with lower level processors feeding into
higher levels) can be considered as a neural network .
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Energy upgrade

Backpropagation

3.2 Global process : from (bio)-Mass-storage to Memory

3 Processes of natural Intelligence : weighted feedforward
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Figure . 5 Simplified representation of an operating energy transformation web formally
equivalent to a feedforward neural network with backpropagation . Note the schematic nature of the
graph. In ecological trophic webs up to 100,000,000 processors of a lower level feed into a single
processor of an upper level .

As it was postulated in [Winiwarter, 1995b], we can interpret a node of the graph as energy processor : the
link to the upper level is constituted via upgraded energy output of the processor, while the downgraded energy
output from the processor to the web constitutes the feedback . On the other hand we can interpret a node of the
graph as information processor and it can be considered as formal neuron : inputs are integrated over its life time
and firing a binary signal to the next higher level occurs at death .

Hence the trophic web (ore any hierarchical energy transformation system), when looked at from an energy
point of view, can be described as a trophic hierarchy of Birth&Death processors, and as a network of binary
threshold automata (ANN), when looked at from an informational point of view.

3.1 Local process : from feedforward of (bio)-Mass to Weights in ANNs
Our analogy between Birth&Death processors and formal neurons is based on the concepts of weighted

summation up to a threshold and its subsequent squashing to a binary value. There is no conceptual difficulty to
accept death as a binary state transition from operation to non-operation . A swallowed pry just undergoes a binary
state-transition from life to death as it becomes the input for the predator, the next level of energy transformation .
The predator however does not simply add his inputs; he weights them . We put forward the simple hypothesis, that
the neural input weight is equivalent to the physical weight or the bio-mass of the pry .

Based on the neural network analogy, a web of Birth&Death processors should reveal memory features
"

	

In the case of a neural network, the memory consists of the threshold values, the input weights and the
topology of active connections of all neurons in the network .

"

	

In the case of a trophic web (or an Energy&Information transformation web in general), the memory
consists of the bio-weights of the Birth&Death processors and the topology of active (trophic) connections
within the web .

It is the bio-mass distribution of the massive parallel Birth&Death processors on each trophic level which
constitutes the o knowledge » or memory of a trophic web of given topology at a given moment in time .



4 Controls of natural Intelligence : feedback training cycles and gradient descent

4.1 Local control : from Feedback of downgraded energy to error-Backpropagation (from
bullshit to green grass)

Again, based on the above analogy, the learning / adaptation of energy transformation webs organized
hierarchically, as illustrated in figure 5, could be modeled like the learning in feedforward neural networks with
backpropagation .

From an energy point of view each processor transforms input energy . Upgraded energy is fed forward to the
next higher level (from left to right) . Downgraded energy is fed back to the lower levels (from right to left). This
feedback

	

ackpropagtionl modifies also the processor parameters of a given level for the next
operation/transformation cycle . Downgraded bullshit increases the bio-mass of the next generation of grass!

Learning and adaptation could be understood here as repeated processing cycles of the energy transformation
web . At each trophic cycle the feedback modifies the parameters of the next generation of newly born processors
in the web. When the feedback and the processor replacement policy is random, the web would show chaotic
behavior . However, when the feedback is correlated to the overall performance of the web (e.g . the gradient
descent method for error minimization), the web will reveal goal oriented behavior and learning.

Figure 6 .

	

error-backpropagation during consecutive runs of a single neuron trained according to
gradient descent. The errors follow a Pareto-Zipf distribution .
(data after McCord Nelson and Illingworth [1991])

When we analyze the error distribution of a single artificial neuron learning according to backpropagation and
gradient descent, we observe a Pareto-Zipf distribution as illustrated above in figure 6.

4.2 Global control : From selective natural « fertilization » to Learning and optimization within
a potential landscape
Like in the case of Birth&Death processors we can pass from the individual life-time domain to a global

population domain and ask the question, what the error distribution would look like at a given moment in time for
the population of neurons in a massively parallel processing network .

Together with B. Roehner [Roehner and Winiwarter, 1985] we have shown, that Pareto-Zipf distributions
reveal a remarkable property, called stability under addition . This means that the aggregation of Pareto-Zipf
distributions yields again a distribution of the Pareto-Zipf type . Hence a sample population of individual neurons
following Pareto-Zipf statistics should reveal Pareto-Zipf behavior. Le . massively parallel processing ANNs
learning according to backpropagation trained according to gradient descent should reveal Pareto-Zipf statistics
for backpropagated errors .
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Now let us consider the observed symptom distributions for Energy&Information transformation systems . The
observed symptoms are proportional to downgraded energy . Assuming, that downgraded energy

	

has a positive
feedback effect on the next processing cycle, we can interpret the observed symptoms as proportional to error
backpropagation.

The fact, that we observe Pareto-Zipf distributions for symptoms on virtually all evolutionary
Energy&Information transformation systems (see table 2 . below), speaks in favor of our hypothesis of a common
underlying process . This adaptive process can be modeled in terms of massive parallel processing multilayer
fcedforward neural networks learning through backpropagation and trained through gradient descent during
consequent processing cycles .

5 Genealogical webs (reproduction or genealogical hierarchies)

5.1. Local genealogy : hardware, birth processing (generation), individual attractors

So far we have only considered the self-production aspect of a Birth&Death processor implying, that a single
processor runs from birth to death with the processor technology (hardware) remaining unchanged over its entire
lifetime.

Recall, that we have modeled death processes as binary threshold automata, triggered by the irreversibly
internally accumulated downgraded dissipation energy within a finite potential .

(rrost human beings will protest to be reduced to binary death threshold automala)

Likewise we can model birth processes as binary threshold automata, triggered by irreversibly internally
accumulated upgraded energy resulting in a binary state transition occurring at replication or birth.

(most women will protest to be reduced to binary birth threshold automata)

5.2 Global genealogy : processor design, parent-child generations (heredity), global fields

So far, from a global point of view, we have only considered energy transformation hierarchies at a given
moment in time . For biological systems this corresponds to a spatial hierarchical decomposition in terms of which
processor feeds into which, ( or who is eaten by whom).

Collective processor memory and learning - given constant processor hardware - can be resumed under the
term system adaptation. The proposed conceptual framework allows to model memory and adaptive system
behavior for massive parallel processors organized in hierarchical feedforward levels undergoing production
cycles. Salthe [1985] in his treatise on evolving (biological) hierarchical systems, calls this hierarchy the
ecological hierarchy .

In evolving hierarchical systems however, processor technology changes over time (from generation to
generation) . In accordance with the biological terminology we call this adaptation of hardware technology
evolution . Hence, in order to model evolution, we need to take into account the hardware changes of processors .
These are related to the replication, reproduction or birth aspects of processors . Salthe [1985] calls this hierarchy
the genealogical hierarchy . i .e. on each level of the hierarchy the parent child relationships from one generation
of processors to the next generation of processors constitute the system's evolution in time .

Table 1 . Salthe's ecological and genealogical hierarchies of nature

The monster-abstraction, which reduces replication or birth to a binary state transition, allows us to model
genetic webs similar to energy transformation webs: i .e. massive parallel processors organized in hierarchical
levels undergoing reproduction cycles .

6 Outlook: towards a general theory of Birth&Death processors evolving in
Energy&Information transformation systems

It would go beyond the scope of this paper, to develop a complete theory of evolution based on ANNs of
Birth&Death processors . We only want to outline a conceptual framework guiding future research in areas of
evolutionary systems for which we can observe Pareto-Zipf distributions.

the emergence of evolutionary Enerev&Information transformation webs
In accordance with a recent paper [Winiwarter and Cempel, 1996] we propose a hierarchy of natural and

artificial » evolving systems as below . Here the ordering of the levels is based on the sequence of emergence of
new types of Energy&Information transformation processes during the evolution of the universe. By new types of
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Ecological hierarchy Genealogical hierarchy
- --- 7 total biosphere
6 surface of the earth 6 historical biota
5 bio- eo ra hical regional 5 mono h letic lineage
4 ecosystem 4 deme set of replicating individuals
3 population 3 integrated genotype phenotype
2 or anismic 2 one
1 molecular I species



Energy&Information we understand qualities, which cannot be explained in terms of the qualities of the lower
levels

Table 2. below gives an overview of the potential application for our approach . Note that in the table both
energy-transformation systems and information transformation systems are mixed. They should be separated like in
Saltine's table above.

Table 2. Generalized Life symptoms : the emergence of energy/information systems, processors,
associated fields of interaction and observed Pareto-Zipf (PZFW) regularities. For a historical
overview and detailed sources see [Winiwarter and Cempel, 1992 and 1996] . According to the
proposed conceptual framework, each level in the table can be modeled as a multilayer feedforward
ANN with backpropagation learning (evolving) according to gradient descent.

In the hierarchy, each level is characterized by a macroscopic Energy&Information system composed of
microscopic Birth&Death processors which interact under the influence of their own characteristic field, which is
generated by the totality of all the processors interacting within the system. For example the bio-chemical field
consists of and regulates the interaction of microscopic molecules in the macroscopic ocean as a system .

Intralevel coupling and transformation
Climbing up the hierarchy we observe diminishing coupling/transformation energies between processors on each
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Macroscopic Microscopic Emerging empirically observed
evolutionary Energy/Information Energy/Information symptoms of energy
Systems Processor type Fields transformation showing

Pareto-Zipf (PZFW)
regularities

21 transdisciplinary formal transdisciplinary meta-theoretical fields backpropagation error-sizes in
systems science (meta-scientist) ANNs
community

20 computer systems man-meta-machine information technology produced file-sizes
(Internet) processor (man-

computer)
19 scientific community formal written symbolic scientific fields produced research papers

communicator scientist theories, paradigms)
18 industrial production man-machine processor technological fields produced dissipation energies

community (technology tradition
17 alphabetical written symbolic written tradition, literature produced word-class sizes

community (literate) individual fields, history
16 economic community economic symbolic economic tradition / trade produced firm-sizes, incomes,

(money) trading fields profits
individual

15 language community formal symbolic (verbal) oral tradition, produced city sizes
communicating religious fields
individual

14 agricultural plant and animal fields of agri-culture produced field sizes
community manipulating individual

13 hunting community tool manipulating hunting tradition / culture
individual

12 fire-place community fire manipulating cooking tradition produced agglomerations
individual (oikos)

11 ethological symbolic communication social fields / ethological produced population aggregates
community individual

10 eco-s stem multicellular organism central nervous (feeling) produced population sizes
9 bioto cell eukariote) genetic/sexual fields produced, species
8 bio-sphere/Gala self-replicating trophic (bio-energy) produced genera

metabolic unicellular
(prokaryote)

7 atmosphere macro-molecule bio-chemical produced micro-particle sizes
oceans

6 earth-crust, tectonic micro-structure geo-mechanical produced earthquakes
plates

5 planets physico-chemical geo-thermal produced chemical compounds
element

4 galaxy, stars nucleus electromagnetic + weak produced nuclei
nuclear

3 proto-galaxy hadron strong nuclear + electro-
weak

2 oto-universe uark ravitation + and unified
1 Planck-era of big graviton super-grand-unified

bang



consecutive higher level. e.g . binding energies between nucleons are orders of magnitudes higher than binding
energies between chemical elements etc.

Interlevel coupling and transformation
a) a higher level can only emerge and evolve within all previous lower levels ; usually when the field in the lower
level exceeds a certain threshold value (bifurcation, symmetry break) .
b) lower levels can destroy higher levels, but higher levels can only constrain lower levels . (see Cempel's energy
hierarchy) .
c) lower level processors feed into (or are eaten by) higher level processors .

As in the case of energy transformation processors, where we pushed the abstraction of the « life » process to
an extreme, reducing the self-production or «life » of a single processor to a binary threshold automaton (death-
processor) . This enabled us to see collective energy transformation behavior in a new light, allowing for the first
time to model global natural system's memory and learning in terms of ANNs.

In terms of energy transformation webs, our conceptual framework can be applied to economic systems
(production threshold automata feeding forward finished goods to upper levels and feeding back money to lower
levels etc .)

In a similar way we can push the abstraction to an extreme and consider the processes of (self)-reproduction
in terms of binary threshold automata (birth processors) organized in a multilayer feedforward hierarchy of
information transformation . 0/1 reproduction automata feed the next generation forward to the upper level in the
genealogical hierarchy and the global « temperature » of the upper level, feeds back and controls the processing
of the next reproduction cycle on the lower level in the genealogical hierarchy .

It is the long term temperature of the biosphere, which « drives » genetic evolution . General « cooling » of the
web drives it towards minima within a potential landscape[Winiwarter, 1995b] . Short local heating, followed by
subsequent cooling can avoid trapping of the web in local minima of suboptimization .

7 Conclusion
1 .

	

All observable evolutionary systems can be described as hierarchical Energy&Information transformation
webs .

2.

	

On each level, energy transformation processors feed upgraded energy into higher levels and feed
downgraded energy back to lower levels . This holds for natural evolutionary systems (astrophysical,
geochemical, ecosystems . . .) but also for o artificial or man-made » evolutionary systems (city systems,
economic systems . . . ) .

3 .

	

Energy transformation processors in all observable evolutionary systems show birth and death processes . We
presented a simple model for an energy transformation processor, which is general enough to be applicable to
any type of energy transformation. A Birth&Death processor is characterized by a limited transformation
capacity in which dissipation energy is irreversibly internally accumulated until a threshold capacity is
reached . (natural death) .

4.

	

Birth&Death processors can formally be described from two points of view
- from an energy-transformation point of view, a Birth&Death processor continuously transforms and
accumulates energy up to a threshold (breakdown at death or replication at birth)
- from an information-transformation point of view however , as observed by the metasystem of the processor,
a Birth&Death processor is equivalent to a binary threshold automaton or formal neuron with the two
possible states : e.g . in the energy processing hierarchy the two states are 0-state (operation or silence) or 1-
state (firing at death) .

5 .

	

Birth&Death processors organized in an hierarchical transformation system (trophic web) are as a
consequence formally equivalent to a neural network of the feed forward type . Lower level processors feed
into higher level processors . Hence all the features of neural networks, like memory, adaptation/learning and
optimization can be looked at in an analog' -way in trophic webs of energy/information transformation
processors

6 .

	

A trophic web has memory; it's memory is non-localized, embedded in the web-topology and the ensemble
of weights (bio-masses) of the web's processors .

7 .

	

Learning (adaptation) of the network takes place in the form of backpropagation . The downgraded energy of
each processor is re-cycled influencing the processor parameters in the next processing cycle . Training of
the web functions according to gradient descent through positive (or negative) feed-back from higher level
processors to lower level processors in both senses of the word (energetic feed-back and cybernetic feedback) .

8 .

	

The error-distribution of a single neuron trained with backpropagation according to gradient descent
follows a Pareto-Zipf distribution .

9 .

	

Pareto-Zipf distributions are stable under addition, hence we should observe error-distributions of this type
also for massively parallel processor networks (like trophic webs) trained with backpropagation according to
gradient descent .

	

10. Longtailed distributions of the Pareto-Zipf-Frechet-Weibull, called generalized life-symptoms, are
empirically observed for (backpropagation) symptoms of virtually all known types of Energy&Information
transformation systems .

11 . The above approach may be the basis for a general theory explaining self-organization, self-learning and
evolution in nature
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