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A Unified Scientometric Model has been developed on the basis of seven principles: the actor-
network principle, the translation principle, the spatial principle, the quantativity principle, the
composition principle, the centre-periphery or nucleation principle, and the unified principle of
cumulative advantages. The paradigm of the fractal model has been expanded by introducing the
concept of fractality index and transfractality. In this work, as the first demonstration of the power
of the model proposed, all the bibliometric laws known and all their mathematical expressions are
deduced, both the structural distributions (Zipf, Bradford and Lotka) as well as the Price’s Law of
the exponential growth of science and Brookes’ and Avramescu’s Laws of ageing.

Introduction

Scientometrics is based on a set of empirical laws of two types: bibliometric
distributions (Zipf, Lotka, and Bradford), of structural character; and dynamic growth
and ageing laws (Price, Brookes, and Avramescu). Science can be studied from three
approaches: non-relational activity indicators, first-generation indicators or co-citation
analysis, and second-generation relational indicators or co-word analysis.

Behind Scientometrics lie various models. Historically, the oldest models are the
Mandelbrot’s fractal model and the principle of cumulative advantages or the principle
of “success breeds success”. The former refers to the structure of science, which is
assimilated to self-similar structures such as those that also appear in other social and
natural settings. Fractality involves a geometry that is generated by chaotic phenomena
(chaos theory, butterfly effect) and complex phenomena (complexity theory). On the
other hand, the latter does not refer to structures but rather reflects a generally accepted
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concept that prior accumulation helps confer subsequent advantage against competitors
(Matthew effect or advantage of the elite and the Ortega Hypothesis or advantage of the
mediocre). Also the widely accepted Kuhn Model posits that science goes through
periods of revolution in which new paradigms are created, and these alternate with
periods in which science follows established paradigms.

With the advent of the relational approach, the Actor-Network Theory and
Translation Theory are the models that reveal the structure of science and its dynamics.
These scientific networks and their translation can be manifested fundamentally by co-
word analysis.

Scientometrics is based on several theories for which a unifying model is needed.
Recently, such a unifying model was developed in a doctoral thesis. The present paper,
the second in a series of five articles, presents the theoretic underpinnings for the model
proposed.1

Objectives
The objective is to develop a Unified Scientometric Model. This will be based on a

set of principles derived from established theories and laws but combined in a
completely novel way. The model should unify all known and accepted bibliometric
and scientometric laws: Zipf’s Law in its various forms (Condon–Zipf,∗ Booth–
Federowicz, Brookes–Zipf and Zipf–Mandelbrot)2-9 Bradford’s Law in its various forms
(Nuclei of Bradford, Brookes–Bradford Equation, Leimkuhler Equation)2,10-22 Lotka’s
Law and Pareto’s Law,15,23-31 in addition to exponential growth law of science 27;32-35 as
well as Brookes’ and Avramescu’s ageing laws.34,36-49 Furthermore, it should offer new
equations that fit the empirical values better than do previous expressions. More
compelling, it must generate new laws (not yet described in the literature) related to the
structure of scientific networks and their dynamics.

Principles of the Unified Scientometric Model

First Principle: Actor-Network Principle

Science and Technology (Technoscience) are comprised of networks of actors
according to the Actor-Network Theory of Callon and Courtial.50–73

This principle implies:
a) Those entities that create and modify Technoscience are called actors.
b) Actors can be defined by words taken not as linguistic or meaning units but only as

verbal or scriptural productions in associated to action, in other words like a kind of
elemental action (verbal definition).

                                                          
∗ or Estoup–Zipf
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c) Actors can be defined according to their relative position in the network (strategic
definition).

d) Actors can be human or non-human (researchers, laboratories, countries, scientific
journals, research topics, documents, measuring devices, financing, etc.). No
distinction is made between them, as all are equally necessary to construct
Technoscience.

e) Technoscience is comprised of a network of interconnected actors.
f) A network is not homogeneous, but rather have areas of greater interconnection,

called interest centres. The interest centres are actors.

Second Principle: Translation Principle

The dynamics of the technoscientific networks are governed by Latour’s Translation
Theory.55,58-60,64-66,74-78

This principle implies, among other matters, the following:
a) The verbal definition of the actors evolves over time by the imposition of positive

and negative modalities (linguistic meaning of the translation).
b) The position of the actors within the network and their strategic situation also

change with time (geometric meaning of the translation).
c) Translations involves the equilibrium between natural and social interactions and

stabilization of the actors. Translations depend on the particular or collective
interests of the actors, on their strategic advantage, and on their intrinsic strength.

Third Principle: Spatial Principle

The translation implies the existence of a space, with temporal and geometric
components of the Hausdorff–Besicovitch type, the spatial dimensions of which are
fractionary.5,8,9,79-84

As opposed to the Mandelbrot model, the conditions of fractality, are not necessarily
imposed, although they may be in a particular case.

Fourth Principle: Principle of Translation Quantitativity

According to Ruiz-Baños et al., translation, T, is equal to the variation in the
qualities of the actors, Q, measured as a quantity according to how they move in the
translation space.65,66

That is, the translation resembles the derivate or gradient of the quality function with
respect to the coordinates of the translation space:
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dx
xdQxT )()( = (1)

where x is a spatial coordinate (geometric or temporal). As the geometric coordinate,
the range, r, can be chosen and, as the temporal coordinate, time or age, t.

The fourth principle implies fundamentally two types of situations:
a) Translation by changing the strategic position:

dr
rdQrT )()( = (2)

b) Translation by temporal evolution:

dt
tdQtT )()( = (3)

Fifth Principle: Principle of Translation Composition

Any translation, complex though it may be, can be considered the composition of
associated elemental translations in a series, in parallel or in combination with the
translations.65

This principle is analogous to the principle of composition of movements of Galileo
or to the mechanisms of chemical reactions.

Sixth Principle: Centre-Periphery Principle or Nucleation Principle

The translation space is the field generated by a point, which can be called a centre
or nucleus, which all the actors seek to approach in order to improve their strategic
position.

The concept of centre implies the existence of a periphery according to the model of
Hongzhou-Guohua and Jiménez-Contreras and that of nucleation, the existence of a
nucleus, and successive Bradford zones.17,85,86.

In combination with the Spatial Principle established above, it is deduced that:
a) With geometric coordinates, the space is a line, circle, sphere, or hypersphere

(according to whether the dimension is 1, 2, 3, or more), or forms of fractionary
dimensions thereof, depending on the complexity of the network of actors.

b) With temporal coordinates, when the dimension = 1, all actors evolve along a single
temporal line; when the dimension > 1 the actors evolve along multiple temporal
lines.
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Seventh Principle: Unified Principle of Cumulative Advantages

The translation, T, is proportional to the product of the strategic advantage, s,
(function of the spatial, geometric, or temporal coordinates), by the intrinsic advantage,
q, (quantitative variable function of the qualities or attributes of the actor or actors).

Mathematically, the above can be defined by the following expression, which we
shall call the Fundamental Equation of the Unified Scientometric Model:

ksqT = (4)
where k is the proportionality constant related to the dimension of the translation space,
s is the strategic advantage, and q is the intrinsic advantage.

In other words, an actor (or group of actors) has a greater translation capacity
depending on intrinsic capabilities as well as a more or less advantageous position
within the network.

The Unified Scientometric Model for Monotonous Translations

We define monotonous translations as those in which an actor (or group of actors),
F, transforms into another actor or group of actors G in an irreversible process as they
move in the same direction through the translation space. In these monotonous
translations, translations are strictly increasing or strictly decreasing:

GF k→ (5)
The following examples are provided for clarity:

1. If we arrange the terms or words that linguistically define, for example, a
network of scientific documents according to their decreasing frequency of
appearance, an increase in the range necessarily implies decreased
frequency (trivial deduction because by definition they have been arranged
in descending order). In this case, our model must generate Zipf’s Law in
all its fractal versions: Condon–Zipf, Booth and Federowicz, Zipf–Brookes,
and Zipf–Mandelbrot, as well as an alternative equation for the samples
that deficiently fit the above expressions (cases that we shall call
“unified”).

2. If we arrange the researchers by their scientific production in descending
order, an increase in the range necessarily implies a decrease in production.
Similarly, this could be applied to the case of production by journal,
research centre, or country. From the model, we should be able to infer the
following fractal laws equivalent to Zipf’s Law: Lotka’s Law, Pareto’s
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Law, and Bradford’s Law in their different versions (Brookes, Leimkuhler,
etc.). Furthermore, the model should give rise to alternative equations for
samples of deficient fits to the above laws (“unified” cases).

3. As example 2, the model should be applicable to the case of arranging links
in the network according to their strength (determined for example by the
equivalency index of the co-word analysis) or to the arrangement of the
research topics according to their density, their centrality, or the number of
documents by theme, by author, by journal, etc. Until now, few if any,
specific laws have been established for these examples.

4. In the case of temporal coordinates, the model should lead to the Price’s
Law of Exponential Growth of Science or Brookes’ Ageing Law.

The equation of the model for Monotonous Translations was deduced in the
following way:

If the translation is the disappearance of F to be transformed into G, the translation
function, according to the fourth principle, is expressed by the following expression:

dx
xdFxT )()( = (6)

where F(x) is the value of the F quality dependent on the x coordinate.
The quality F(x) can be the frequency of a word in a text, the production of a

journal, or the references of a given age that appear in a group of documents. The x
coordinate can be either a range or a time period.

Let us assume that the strategic advantage, s, corresponds to the following
expression consisting of a reworking of Mandelbrot’s principle of the accumulated
advantages:8

ϕ)(
1
mxs +−= (7)

where m is the Mandelbrot parameter which will hereafter be called the Mandelbrot
Distance, since it represents the geometric or temporal distance for the first actor to the
centre of the translation space (for this, m is added to x so that the distance refers
exactly to the centre when the first actor is not positioned exactly at that point). The
exponent ϕ will hereafter be called the fractality index (for reasons disclosed below).

Let us assume now that the intrinsic advantage, q, is equal to the value of quality
(expressed, logically, by quantity):

)(xFq = (8)
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Therefore, the fundamental equation of the model for irreversible translations is:

ϕ)(
)()(

mx
xFkdx

xdF
+−= (9)

This is a ordinary differential equation with variables separable:

ϕ)()(
)(

mx
dxkxF

xdF
+−= (10)

Integrating from x = 1 to x:

∫ ∫ +−=
)x(F

)(F

x

)mx(
dxk)x(F

)x(dF
1 1

ϕ (11)

From here, the result of the integration depends on whether the value of ϕ is unity,
nil or any other value.

Case of the fractality index, ϕ, equal to 1

m
mxkF

xF
+
+−= 1ln)1(

)(ln (12)

k

k

mx
m

F
xF

)(
)1(

)1(
)(

+
+= (13)

k

k

mx
mFxF )(

)1)(1()( +
+= (14)

From Eq. 14, considering different values of x, k and m, we deduce the following
bibliometric equations:

Deduction of Zipf’s Law, Mandelbrot’s Law, Leimkuhler’s Generalized Law, and
Lotka–Pareto’s Law.

α
m
m)(r

kF(r)mr,  kx +=⇒≠≠==          0 , 1  1,ϕ (15)

where Km is the Mandelbrot Constant.
k

m mFk )1)(1( += (16)
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and α is the Booth and Federowicz exponent. It represents the inverse of the Hausdorff–
Besicovitch dimension or the fractal dimension, D.

Dk 1==α (17)

This is the expression that Mandelbrot deduced from lexicographic trees and these
constitute the basis of Fractal Theory. On the other hand, here the deduction is made in
another way. In conclusion, Fractal Theory is a particular case of the Unified
Scientometric Model.

Bradford’s Law is nothing more than the definite integral of Zipf’s Law. Therefore,
integrating each of the different equations assigned to Zipf’s Law, we get all the
equations assigned to Bradford’s Law.

∫=
r

drrFrR
0

)()( (18)

where R(r) is the accumulated quality of the actor F. In the case of productivity of
journals, R(r) represents the number of articles accumulated.

In specific, Zipf–Mandelbrot’s Law, which has been deduced, lead to Leimkuhler’s
Generalized Law applying Eq. 18. Thus:

∫ +=
r

m dr
mr

krR
0 )(

)( α (19)

( ) αα
α

−− ++−= 11
1)( mmrkrR (20)

Eq.20 has the same structure as that found by Rousseau.25 Nevertheless, it would be
worthwhile, when appropriate, to make a more detailed study to identify exactly all the
constants.

Lotka’s Law is arrived at, as the derivate, with the sign changed, from the inverse
function of Zipf’s Law:

)())(( rdF
drrFA −= (21)

where A(F(r)) is the number of actors for which the quality equals F(r). Normally,
A(F(r)) is similar to the number of authors or researchers who publish F(r) works.
Nevertheless, it can be associated with other types of production (GNP, sales,
purchases, salary, etc.) and with other actors (countries, companies, customers, workers,
etc.). In these cases, it is usually called Pareto’s Law, but formally it is identical with
Lotka’s Law.
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The inverse of Mandelbrot’s Law is:

mrF
kr m −



= α

1

)( (22)

Making the replacement in Eq.21, we get:

α

α
α

11

1

)(
))((

+
=

rF

k
rFA

m

(23)

If R = F(r) and constants are regrouped, Lotka–Pareto’s Law results:

γR
ARA )1()( = (24)

with

α
α
1

)1( mkA = (25)

and

αγ 11+= (26)

Deduction of the Booth–Federowicz Law and Lotka’s Law

α
b

r
kF(r)mr,  kx =⇒=≠== 0 1,  1,ϕ (27)

where kb is the Booth and Federowicz constant.
(1) F kb = (28)

In this case, F(1) is situated over the centre of the translation space.
Bradford’s Law is determined in a way similar to the procedure followed in the

foregoing section, by integration of Zipf’s Law:

∫=
r

k dr
r

FrR
0

)1()( (29)
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( ) 11
)1()( −−= krk

FrR (30)

This expression has no equivalent in the literature available and appears not to have
described before. In this sense, the model proposed presents predictive capacity of laws
heretofore undescribed.

This expression of Zipf’s Law also leads to Lotka’s Law, as occurred with
Mandelbrot’s Law, with an identical result.

Deduction of the Brookes–Zipf Law, Leimkuhler’s Law, and Lotka’s Law.

rm
kF(r) m, r,  k,  x br
+=⇒≠=== 011ϕ (31)

where kbr is the Brookes constant.
)1)(1( mFkbr += (32)

The Brookes–Zipf Law is deduced when the dimension of the translation space is
equal to unity: the actors are distributed along a completely straight line of ranges.

From this expression, it is possible to deduce Leimkuhler’s Law, since replacing
Eq. 31 with Eq. 19 and integrating gives:

)1ln()( m
rkrR br += (33)

which is identical to that of Leimkuhler, with a = kbr and b = 1/m
Similarly, Lotka’s Law resulting from the replacement in Eq. 21 is the expression

with the exponent equal to 2.

2
)1()(

R
ARA = (34)

Deduction of the Condon–Zipf Law

This is the initial expression of Zipf’s Law (previously described by Condon). It is
the simplest case, in which the centre of the translation space coincides with the actor of
greatest frequency, and the fractal dimension is unity: the actors are arranged on a
straight line.

r
FF(r) m, r,  k x (1)01 1, =⇒====ϕ (35)
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After integrating from a range r0 to r, the resulting Bradford’s Law is the one that
fits the straight fraction (Brookes–Ferreiro Equation):

drr
)(F)r(R

r

r
∫=
0

1 (36)

cra)r(R += log (37)
where a = F(1)/2.303 and c = F(1) ln r0.

In the same way as in the preceding section, Lotka’s Law deduced is the expression
with the exponent equal to 2:

2
1

R
)(A)R(A = (38)

Case of the fractality index, ϕ, equal to 0

Eq. 11 is transformed into the following:

∫ ∫−=
)x(F

)(F

x
dxk)x(F

)x(dF
1 1

(39)

for which the solution is:

kkx)(F
)x(F +−=1ln (40)

kxk ee)(F)x(F −= 1 (41)

kxe)(F)x(F −= 0 (42)
where:

ke)(F)(F 10 = (43)

Meaning of the fractality index, ϕ
The fractal model developed by Mandelbrot is applied not only to Zipf’s Law of

word distribution but also to a multitude of social and natural phenomena, such as
fluctuations in the stock market, population distribution, wealth distribution, plant
development, Brownian movement, crystal growth, surface of catalysers, and a long list
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of etceteras. In all cases, the function found is of inverse-power or Zipf (or Lotka–
Pareto, which is equivalent) type.

On the other hand, it can be seen that Eq. 42, which was obtained when the
parameter ϕ = 0, is exponential and not of the inverse power Zipf type, like all the
previous ones when ϕ = 1. This indicates that when ϕ = 1, the system is fractal (because
it obeys Zipf’s Law and is represented by a inverse-power equation) whereas when
ϕ = 0, the system must have a structure other than fractal, at least according to
Mandelbrot’s model, as the function is not inverse power, but rather exponential.

In the cases in which ϕ presents an value between zero and unity, the translation
space considered should present a hybrid or semifractal structure. In these hybrid cases,
the functions that result are intermediate between exponential and inverse power.

There is a fourth case in which ϕ < 0. The function obtained is again hybrid,
between exponential and power. The scheme is therefore symmetrical, where ϕ = 0
makes a boundary between more or less fractal cases and more or less transfractal. The
term transfractal was chosen because it means “beyond fractality”, implying the
crossing of a dividing line or boundary between the two zones.

All this induces us to establish a fractality scale by using the value ϕ, and therefore
from the start we have called it the fractality index (Table 1).

Table 1. Fractality index and type of translation space
Fractality index, ϕ Type of translation space Type of model

1 Fractal Inverse power
0 < ϕ < 1 Semifractal Exponential - Power

0 Boundary Exponential
< 0 Transfractal Exponential - Power

In addition, the co-fractality index, β, is defined as β = 1 – ϕ, the meaning of which
is complementary to that of the fractality index.

Deduction of Brookes’ Law of the Ageing of Science

Here, the coordinate x is age, t, of the citations or of the references. Let us consider a
very simplified model that implies that as time passes, inevitably, the documents and
volumes of the journals gradually lose the citations from a high rate during the year at
age zero to disappearance at infinity (Brookes Model). Below, we shall develop our
own new model which can fully explain the behaviour of the citation, both synchronic
as well as diachronic, which includes the effect of delays in publications as well as the
possibility that a residual utility period persists even after an enormously long period of
time. On the other hand, in the simplest case, the Brookes model, we find that:

kteFtFk,tx −=⇒>== (0))(0  0,For ϕ (44)
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This exponential function is decreasing since k is considered positive. If the citations
or the references are proportional to the number of documents F(t) and we denote them
by c(t), Eq. 44 becomes:

kte)(c)t(c −= 0 (45)
The utility of a set of documents subject to citation, U(t), is considered to be the

total of citations that it can receive from the present, or any time, t, until the end of its
life. Therefore, on integrating from age t to infinity, the resulting utility U(t) is:

∫
∞

=
t

dt)t(c)t(U (46)

∫
∞

−=
t

kt dte)(c)t(U 0 (47)

ktke)(c)t(U −= 0 (48)
If

k)(c)(U 00 = (49)

10 ≤≤= − aea k (50)
we get

ta)(U)t(U 0= (51)
which is the fundamental equation of the Brookes’ model of Utility or Ageing of
Science.

Since k = 1/D, the annual ageing factor, a, and the dimension of the translation
space, D, are related. From Eq. 50, it can be deduced that:

Dea
1−= (52)

Taking into account that the half-life, h, of the citations or of the references is the
time in which the utility is reduced to half, U(h) = U(0)/2, we can easily deduce from
Eq. 51 that:

ah ln
2
1ln 



= (53)
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Combining this expression with Eq. 52, we deduce that the half-life of the citations
or of the references is related to the dimension of the translation space, in such a way
that the quotient between the two is constant:

2ln=D
h (54)

A reduction in dimension is associated with a slowing of the ageing factor, with a
decrease in the half-life, and therefore with a greater degree of ageing. It could be
interpreted that the existence of many degrees of freedom (large D) helps a document
maintains its utility, while the few of degrees of freedom lead inevitably to
obsolescence. In Table 2, some values have been calculated as an example.

Table 2. Dimension of the translation space and aging of Science
Dimension, D Ageing factor, a Half-life, h (years) Ageing

Infinity 1.00 Infinity Null
20 0.95 13.9 Low
10 0.90 6.9 Moderate
5 0.82 3.5 High
2 0.61 1.4 Highest

The table reveals that the dimensions of the Hausdorff–Besicovitch translation space
for ageing are very large, this being quite surprising compared to what might be
expected. If it was already difficult to understand fractionary dimensions or dimensions
greater than three in geometric spaces, it appears to be even harder to grasp the idea of
temporal space of 10, 20 or more dimensions. We will not dwell further on this question
in the present work, but it will doubtless be a compelling challenge for future
exploration.

Deduction of Price’s Law of Exponential Growth of Science

The foregoing case differs only in that k is now negative and thus the exponential
becomes positive.

-ktFtFktx (0)e)(0  , 0, =⇒<==ϕ (55)
If we use P(t) to denote the production of articles, the population of researchers, the

number of journals or any other variable related with the size of Science, and,
furthermore, make the change k'=–k, Eq. 44 transforms into the well-known Price
equation:

t'ke)(P)t(P 0= (56)
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Case of fractality index other than 0 and 1. Zipf’s Unified Law

This is the case in which the translation spaces can be considered semi-fractal or
transfractal. Equation 11 must be directly integrated:

∫ ∫ +−=
)x(F

)(F

x

)mx(
dxk)x(F

)x(dF
1 1

ϕ (11)

( ) ( ) ϕϕ
ϕϕ

−− +−++−−= 11 1111ln mkmxk
)(F
)x(F (57)

( ) ( ) ϕϕ
ϕϕ

−− +−
−+−=

11
1111

mxkmk
ee)(F)x(F (58)

If we define
( ) ϕ

ϕ
−+−=

11110
mk

e)(F)(F (59)

ϕ−= 1
kb (60)

and
ϕβ −= 1 (61)

then the general equation of the model, applicable for any value of ϕ, except for the
unity that represents Zipf-type or purely fractal expression (Eq. 15), is:

( )βmxbe)(F)x(F +−= 0 (62)
This expression represents what we shall hereafter call Zipf’s Unified Law. As in

previous sections, we can deduce expressions for Lotka’s Unified Law and Bradford’s
Unified Law.

Deduction of Lotka’s Unified Law.

If we use T = F(x) and T0 = F(0) to denote Zipf’s Unified Law (Eq. 62), it has the
following aspect:

( )βmxbeTT +−= 0 (63)
The inverse function is determined by solving x as a function of T, giving:
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mT
T

bx −









−=

β
1

0
ln1 (64)

By definition, Lotka’s Law is the derivate of the inverse function of Zipf’s Law with
the sign changed:

dT
dxTA −=)( (65)

Combining this expression with Eq. 64, we get the following result:

Tb
T
T

b
)T(A β

β 11

0
ln1 −











−

= (66)

T
T
T

b
b)T(A

β
β

β
β

β

−−
















 −
=

1

0

1

ln1
(67)

if

β

β
β

b
bB

−




 −
=

1
1

(68)

[ ] β
β
−−

=
10lnln TTT

B)T(A (69)

if, furthermore,
0lnT=λ (70)

β
βµ −= 1 (71)

For Lotka’s Unified Law the resultant is the following:

( )µλ−=
TT
BTA

ln
)( (72)
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As opposed to the classical Lotka’s Law, in which the number of actors A(T) that
have produced T items (using the nomenclature of the IPP of Egghe and Rousseau) are
in an inverse power relationship, Lotka’s Unified Law, which has been deduced, shows
that the number of actors is inversely proportional to the T items and to a power of the
logarithm of these T items.

Deduction of Bradford’s Unified Law. Bradford’s Law Unified will be, using
arguments identical to those in previous sections, the following expression:

∫=
x

x
dx)x(F)r(R

0

(73)

( )∫ +−=
x

x

mxb dxe)(F)r(R β0 (74)

The analytical resolution of this integral is very complex, and thus in practice only
numerical solutions are possible. The trapezoid rule or Simpson’s rule can be used to
indicate two common methods.

The Unified Scientometric Model for Complex Translations

According to the Fifth Principle or the Principle of the Composition of Translations,
any translation, regardless of how complex, can be interpreted as a composition of
elemental translations in a series, in parallel or in a combination of the two forms.

As an example of this possibility, a very general and novel Ageing-Viability Model
will be developed, which, as in particular cases, leads to Avramescu’s and Brookes’
equations.

Generalized Model of Ageing -Viability

Let us consider a set of recently published documents subject to be cited. Let us
structure this set in four possible states (each state can be considered a different actor as
its definition is also different). The states or actors are:

State X: Documents with low translation capacity and therefore will never be cited.
State P: Documents with a sufficiently high translation capacity to influence later

works but, for the delay in the publication of the later works, the former must wait to be
cited.

State C: Documents that are currently being cited. In the future these could maintain
this state, but the trend will be translated to state N.
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State N: Documents that have been cited at some time but that currently have
declined in viability. Nevertheless, there is a certain probability to be translated again to
the citation state, C, but this probability will progressively diminish with time.

The translation from state P to C is irreversible, since once reached (to be cited
once) it is not possible to go back. On the other hand, between states C and N, a
dynamic equilibrium between viability (state C) and obsolescence (state N) is
established, this with time being tipped towards ageing. Nevertheless, it is expected that
the final equilibrium does not lead to the total and absolute disappearance of viability;
rather a residual viability remains regardless of the passage of time. It is known that
practically no document is cited after 20 to 30 years, but certain ones nevertheless
maintain a certain degree of citation. Some persist decades and even centuries. It is
evident that works such as Philosophiae Naturalis Principia Mathematica of Isaac
Newton, The Book of the Dead of Egypt, the Code of Hammurabi, or the Bible, to cite a
few notable examples, will always have a place in the reference lists of later documents.

The model described corresponds to the following combination of elemental
translations:

NCP
X

k

k
k

←
→→

3

2
1

)ranslation(without t

(75)

The three translations of the system are:
1. First citation and acquisition of “viability” quality (translation from P to C)
2. Obsolescence or Ageing (translation from C to N)
3. Recovery of viability (translation from N to C)

The fundamental equation of the Unified Scientometric Model for each elemental
process of translation, i, is the following:

sqkT ii = (76)
The complex translation applied to an actor, j, is the sum of the elemental

translations that affect it, but taking into account that, if the elemental translation
implies increased quality, the strategic advantage is defined as constant and equal to +1
(s = +1). If the elemental translation involves, on the other hand, reduced quality, the
strategic advantage is equal to –1 (s = –1) Consequently, translations that each of the
actors (or states) undergoes are:

pkdt
dpP 1:Actors -Type −= (77)

nkckpkdt
dcC 321:Actors -Type +−= (78)
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nkckdt
dnN 32:Actors  -Type −= (79)

The symbols p, c and n indicate the number of documents (intrinsic advantage, q) in
the states P, C and N, respectively. It should be indicated that the number of citations, C
(in upper case) at a given moment is proportional to the number of documents that at
that moment are being cited, c (lower case):

cC λ= (80)
where: λ is the density of the mean citation (Citations / Article) (constant over the time
period studied).

Note that the rate at which the P-type actors undergo a qualitative loss (s = –1) is
proportion to their qualitative level at each instant. On the other hand, C-type actors are
affected by the three elemental translations simultaneously. That is, they increase their
quality “to be cited”, thanks to the translation “acquisition of viability” from P to C
(+k1P, since s = +1 and q = P) and to the translation “recovery of viability” from N to C
(+k3N, since = +1 and q = N) and to the translation “ageing”, for the passage from C to
N (–k2C, with s = –1 and q = C). Analogously, the N-type actors are translated
positively thanks to the passage of C to N and negatively by the passage of N to C.

The integration of Eq. 77 leads to the following expression:
tkepp 1

0
−= (81)

If we replace this equation in the system formed by Eq. 78 and Eq. 79, previously
rearranged, we get:

032

0132
1

=+−
=−+ −

nkckDn
epknkckDc tk

(82)

where D is the operator derivate:

dt
dD ≡ (83)

Finding the common factor in both equations, we get:

023

0132
1

=−+
=−+ −

ckn)kD(
epknkc)kD( tk

(84)

If the first is multiplied by (D + k3) and the second by k3, and the resulting equations
are added together, we get the following expression, the function that depends only on
the number of documents, c, which are being cited at the instant or age t:

tkepk)kD(ckkc)kD)(kD( 1
0133232

−+=−++ (85)
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Performing the appropriate operations, we get:
tkep)kk(Dc)kk(cD 1

03132
2 1 −−=++ (86)

which is a second-order differential equation of which the characteristic equation,
without the second member, is equal to:

032
2 =++ D)kk(D (87)

for which the solutions or roots are:

)kk(r
r

322

1 0
+−=

= (88)

The general solution, without considering the second member, is then:
t)kk(eaac 32

21
+−+= (89)

Given that the second member is exponential, the particular solution is also
exponential of the type:

tkea)t(f 1
3

−= (90)
This equation should satisfy the complete differential equation (Eq. 86), such as:

tkeka)t('f 1
13

−−=
tkeka)t(''f 12

13
−= (91)

Carrying out replacements in Eq. 86 and the appropriate calculations, the value of a3
is determined:

)kk(k
ka

321

3
3

1
+−
−= (92)

which is replaceable in the complete general equation:
tkt)kk( eaeaac 121

321
−+− ++= (93)

Also, when:
∞=⇔∞→ cat 1 (94)

where a1 is the number of documents that are residually cited at the infinite age.
If we take into account that the number of citations or references is proportional to

the number of documents in the state of citation (Eq. 80), the resulting Equation of the
Ageing-Viability Model is:
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tkt)kk( eAeAAC 132
321

−+− ++= (95)
with:

∞== caA λλ 11 (96)

22 aA λ= (97)

321

3
33

1
kkk

kaA −−
−== λλ (98)

Deduction of Avramescu’s Equation. Admitting that the degree of the residual
citation at infinity is nil, A1=0 and k3=0 (since there is no translation to go from N to C,
or else k3 is proportionally very small with respect to k2). Thus:

tktk eAeAC 12
32

−− += (99)
Furthermore, if no citations occur in the year zero:

320 AA += (100)
and therefore:

)ee(AC tktk 12
2

−− −= (101)
This is Avramescu’s Equation.

Deduction of Brookes’ Equation. If we consider that there is no delay in the citation
process (k1 is very large) Avramescu’s Equation transforms into:

tkeAC 2
2

−= (102)
This identical to:

kte)(c)t(c −= 0 (45)
which, by integration, as before, generates Brookes’ utility equation:

ta)(U)t(U 0= (51)

Summary of the Scientometric Laws unified by the model

Table 3 presents a summary of the scientometric laws that have been deduced with
the Unified Scientometric Model proposed here.
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Table 3. Laws that the model unifies
ϕϕϕϕ x K m Distribution Equation

Zipf – Mandelbrot ( )αmr
kRF m
+=)(

Lotka 2≠ϕ γR
ARA )1()( =0≠

Generalized Leimkuhler ( ) αα
α

−− ++−= 11
1)( mmrkrR

Booth – Federowicz αr
kRF b=)(

Lotka 2≠ϕ γR
ARA )1()( =

1≠

0

Bradford
 (Not described
in bibliography) ( ) 11

)1()( −−= krk
FrR

Zipf – Brookes mr
kRF br
+=)(

Lotka 2=ϕ 2
)1()(

R
ARA =0≠

Leimkuhler 


 += m
rkrR br 1ln)(

Condon – Zipf r
kRF m=)(

Lotka 2=ϕ 2
)1()(

R
ARA =

1
Fractal

r
Ranks

1

0

Brookes – Ferreiro crarR += log)(
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Table 3. (continued)
ϕϕϕϕ x K m Distribution Equation

>0 -
Brookes’ Law of

the Ageing of
Science

taUtU )0()( =
0

Boundary
<0 -

Price’s Law of
Exponential
Growth of
Science

tkePtP ')0()( =

K1,
K2,
K3

- Generalizad Model
of Ageing-Viability

tktkk eAeAAC 132 3
)(

21
−+− ++=ϕ

not defined.
Complex

translation

t
Time

or
Age

K1,
K2

Avramescu’s
Equation 


 −= −+− tktkk eeAC 132 )(

2

Zipf’s Unified
Law

( )βmxbeFxF +−= )0()(
Lotka’s Unified

Law ( )µλ−=
TT
BTA

ln
)(

0
1

≠
≠

ϕ
ϕ
Unified

r, t ℜ 0≥
Bradford’s Unified

Law ∫=
x

x
dxxFxR

0

)()(

Conclusions
The Unified Scientometric Model presented in this work represents the

quantification of the Actor-Network Theory and Translation Theory, as well as their
integration with the Fractal and Accumulated-Advantages Models. Similarly, it expands
the Fractal Model paradigm through the concepts of the Index of Fractality and
Transfractality.

In an introductory display of its potential, it has proven capable of unifying all the
bibliometric laws known: Zipf’s Law in its various forms (Condon–Zipf, Booth–
Federowicz, Brookes–Zipf and Zipf–Mandelbrot), Bradford’s Law and analogous forms
(Brookes–Bradford Equation, Leimkuhler’s Equation, Leimkuhler’s Generalized
Equation), Lotka’s Law and Pareto’s Law, Price’s Law of the growth of science, and
the ageing Laws of Brookes and Avramescu. In addition, we propose other laws not
described in the literature, particularly the unified laws of Zipf, Bradford and Lotka.

Future works will show that the model proposed is capable even of explaining
simultaneously the Mateo Effect, the advantage of the “elite”, the Ortega hypothesis,
and the advantage of the “mediocre”. Furthermore, it will be shown that it is an
effective tool for making predictions, thanks to an innovative combination of relational
indicators of activity.
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